Of vector fields

Here we are trying to compute integrals of the form

\begin{displaymath}
\int_C\mathbf{F}\cdot\mathrm{d}\mathbf{r} =
\int_C \mathbf{...
...eft(\mathbf{r}(t)\right) \cdot  \mathbf{r}'(t) \mathrm{d}t,
\end{displaymath}

alternately written

\begin{displaymath}
\int_C P \mathrm{d}x + Q \mathrm{d}y + R \mathrm{d}z,\mbox{ where }\mathbf{F}=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}.
\end{displaymath}

Let's work with the vector field $\mathbf{F}(x,y,z)=\langle -xy^3, xz, yz^2\rangle$. We will integrate along the curve $C$ parameterized by $\langle t^2, t^3, t^4\rangle$ for $0\leq t\leq 1$.


\begin{maximasession}
F(x,y,z) := [-x*y^3, x*z, y*z^2];
[x,y,z]: [t^2, t^3, t^4]...
.... diff([x,y,z], t), t, 0, 1); \\
\o7. .4461538461603605 \\
\end{maximasession}



G. Jay Kerns 2009-12-01