Partial Derivatives

We do partial derivatives in the natural way. For example, for the partial derivative with respect to $x$ we do


\begin{maximasession}
diff(f(x,y), x);
\maximaoutput*
\i1. diff(f(x,y), x); \\
\o1. {{d}\over{d x}} f\left(x , y\right) \\
\end{maximasession}

The long way to get higher order derivatives is to nest the diff calls. The second order partial derivative is


\begin{maximasession}
diff(diff(f(x,y), x), x);
\maximaoutput*
\i2. diff(diff(f(...
..., x); \\
\o2. {{d^2}\over{d x^2}} f\left(x , y\right) \\
\end{maximasession}

and the second partial with respect to $x$ then $y$ is


\begin{maximasession}
diff(diff(f(x,y), x), y);
\maximaoutput*
\i3. diff(diff(f(...
...; \\
\o3. {{d^2}\over{d x d y}} f\left(x , y\right) \\
\end{maximasession}

For higher order partial derivatives a quicker way is to do


\begin{maximasession}
G: x^7 * y^8;
diff(G, x, 1, y, 2, x, 3);
\maximaoutput*
\i...
...\i5. diff(G, x, 1, y, 2, x, 3); \\
\o5. 47040 x^3 y^6 \\
\end{maximasession}

The above first differentiates $G$ with respect to $x$ three times, then with respect to $y$ two times, and finally with respect to $x$ one time; that is, the arguments match the Leibnitz notation for partial derivatives.





G. Jay Kerns 2009-12-01