Integration in Polar Coordinates

We can integrate in polar coordinates in the obvious way. We simply make the substitution x = rcos(theta) and y = rsin(theta), then don't forget to multiply the integrand by r.


\begin{maximasession}
f(x,y) := x^2 + y^2;
[x,y]: [r * cos(theta), r * sin(theta...
...ta)), theta, -%pi/2, %pi/2); \\
\o3. {{3 \pi}\over{2}} \\
\end{maximasession}





G. Jay Kerns 2009-12-01